ES3C28P&ES3N28P 2.8inch IPS ESP-IDF Demo Instructions

CONTENTS

1.	I. Software and hardware platform description					
2.	Pin allocation instructions	. 3				
3.	Instructions for the example program	5				
	3.1. Set up ESP32 MicroPython development environment	. 5				
	3.2. Example Program Usage Instructions	. 5				

1. Software and hardware platform description

Module: 2.8-inch IPS ESP32-S3 display module with 240x320 resolution and ILI9341V screen driver IC.

Module master: ESP32-S3 chip, the highest main frequency 240MHz, support 2.4G WIFI+ Bluetooth.

ESP-IDF version: 5.4.1

LVGL version: 8.4.0.

2. Pin allocation instructions

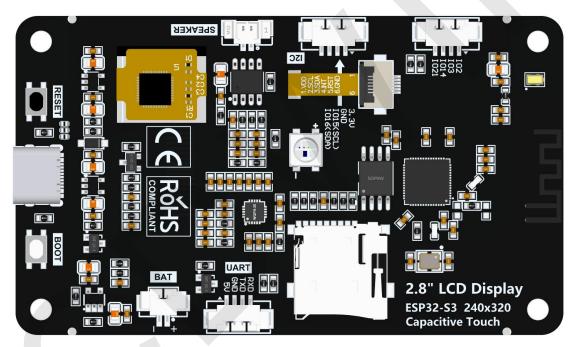


Figure 2.1 Rear view of 2.8-inch ESP32-S3 display module

The main controller of the 2.8-inch ESP32-S3 display module is ESP32-S3 chip, and the GPIO allocation for its onboard peripherals is shown in the table below:

ESP32-S3 chip pin allocation instructions					
On board device	On board device pins	ESP32-S3 connection pin	description		
	TFT_CS	1010	LCD screen chip selection control signal, low level effective		
LCD	TFT_RS	1046	LCD screen command/data selection control signal.High level: data, low level: command		

	TFT_SCK	1012	LCD SPI bus clock signal
	TFT_MOSI	IO11	LCD SPI bus writes data signals
	TFT_MISO	IO13	LCD SPI bus reading data signal
	TFT_RST	CHIP_PU	LCD screen reset control signal, low level reset (shared reset pin with ESP32-S3 main control)
	TFT_BL	1045	LCD screen backlight control signal (high level lights up the backlight, low level turns off the backlight)
	TP_SDA	1016	Capacitive touch screen I2C bus data signal
	TP_SCL	IO15	Capacitive touch screen I2C bus clock signal
СТР	TP_RST	IO18	Capacitive touch screen reset control signal, low level reset
	TP_INT	1017	Capacitive touch screen interrupts the input signal, and when a touch event occurs, it inputs a low level
LED	RGB_INT	1042	Single line RGB three color LED light, which can light up the internal red, green, and blue light beads according to different signals
	SD_CLK	IO38	SD card SDIO bus clock signal
	SD_CMD	1040	SD card SDIO bus command signal
SDSABB	SD_D0	1039	
SDCARD	SD_D1	1041	SD card SDIO bus data signal
	SD_D2	1048	(DATA0~DATA3 four data lines)
	SD_D3	1047	
BATTERY	BAT_ADC	109	Battery voltage ADC value acquisition input signal
	Audio_EN	101	Audio output enable signal, low-level enable, high-level disable
	I2S_MCK	104	Audio I2S bus master clock signal
Audio	I2S_SCK	105	Audio I2S bus bit clock signal
	I2S_DO	106	Audio I2S bus bit output data signal
	I2S_LRC	107	Audio I2S bus left and right channel

			selection signals. High level: right channel; Low level: Left channel
	I2S_DI	108	Audio I2S bus bit input data signal
KEY	BOOT_KEY	100	Download mode selection button (press and hold the button to power on, then release it to enter download mode)
	RESET_KEY	EN	ESP32-23E reset button, low level reset (shared with LCD screen reset)
LICE	USB_N	IO19	USB bus differential signal data line negative pole
USB	USB_P	1020	Positive pole of USB bus differential signal data line
	ТХО	IO43	ESP32-S3 serial port 0 sending signal
Serial Port	RX0	1044	ESP32-S3 serial port 0 receiving signal
POWER	TYPE-C_POWER	1	Type-C power interface, connected to 5V voltage

Table 2.1 Pin allocation instructions for ESP32-S3 onboard peripherals

3. Instructions for the example program

3.1. Set up ESP32 IDF development environment

For detailed instructions on setting up the ESP32 IDF development environment, please refer to the "Building an ESP-IDF environment using VS Code" documentation in the package.

3.2. Example Program Usage Instructions

The example program is located in the "1-示例程序_Demo\ESP32-IDF" directory of the package, as shown in the following figure:

Figure 3.1 Example Program

The example program has already been ported to LVGL and the relevant program files have been modified, so it can be used directly. For LVGL porting instructions, please refer to the "ESP-IDF_LVGL_porting_instructions"

document in the resource package. The steps to use the example program are as follows:

- A. Copy the entire folder of the sample program "2.8inch_ESP32-S3_LVGL" to a path named entirely in English. Otherwise, an error will occur during compilation due to the inability to find the path.
- B. Open the VS Code software, click on "File" ->"Open Folder", as shown in the following figure

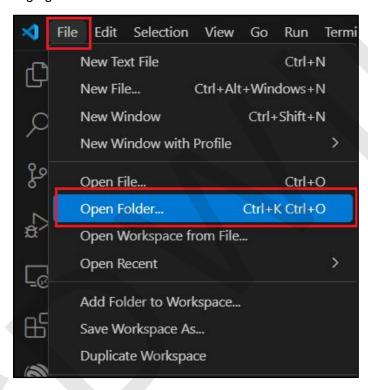


Figure 3.2 open folder

C. Find the sample program folder, click to select it, and then click the "SelectFolder" button to open the sample program, as shown in the following figure:

Figure 3.3 Find the sample program folder

- D. Connect the ESP32 device to the computer, select the correct serial port number, chip, and download method from the bottom toolbar of VS Code, and then click the button to compile and burn.
- **E.** After the burning is completed, you can see the display module has displayed.

