E32R28T-1&E32N28T-1 2.8inch ESP-IDF Demo Instructions

CONTENTS

1.	Software and hardware platform description	. 3
2.	Pin allocation instructions	. 3
3.	Instructions for the example program	.5
	3.1. Set up ESP32 MicroPython development environment	.5
	3.2. Example Program Usage Instructions	. 5

1. Software and hardware platform description

Module: 2.8-inch ESP32-32E display module with 240x320 resolution and ST7789P3 screen driver IC.

Module master: ESP32-32E module, the highest main frequency 240MHz, support 2.4G WIFI+ Bluetooth.

ESP-IDF version: 5.3.1 LVGL version: 8.3.11.

2. Pin allocation instructions

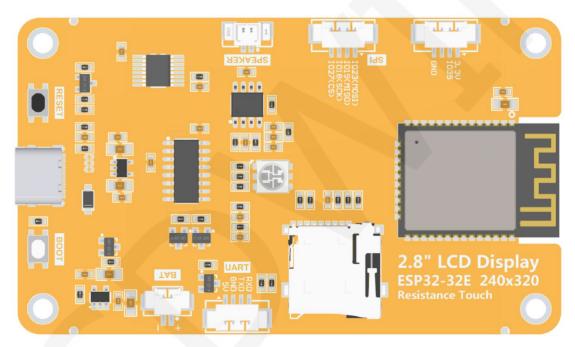


Figure 2.1 Rear view of 2.8-inch ESP32-32E display module

The main controller of the 2.8-inch ESP32 display module is ESP32-32E, and the GPIO allocation for its onboard peripherals is shown in the table below:

	ESP32-32E pin allocation instructions				
On board device	On board device pins	ESP32-32E connection pin	description		
	TFT_CS	IO15	LCD screen chip selection control signal, low level effective		
LCD	TFT_RS	102	LCD screen command/data selection control signal.High level: data, low level: command		

			<u> </u>		
	TFT_SCK	1014	LCD SPI bus cloc	ck signal	
	TFT_MOSI	1013	LCD SPI bus writes data signals		
	TFT_MISO	1012	LCD SPI bus reading data signal		
	TFT_RST	EN	LCD screen reset control signal, low leve reset (shared reset pin with ESP32-32E main control)		
	TFT_BL	IO21		light control signal (high backlight, low level turns	
	TP_SCK	1025	Resistance touch screen SPI bus clock signal		
	TP_DIN	1032	Resistance touch screen SPI bus writes data signals		
RTP	TP_DOUT	1039	Resistance touch screen SPI bus reading data signal		
	TP_CS	1033	Resistance touch screen chip selection control signal, low level effective		
	TP_IRQ	1036	Resistive touch screen touch interrupt signal, when a touch is generated, input a low level to the main control		
	LED_RED	1022	Red LED light	RGB tri color LED light,	
LED	LED_GREEN	1016	Green LED light	with a common anode, lit at low level and turned off at high level.	
	LED_BLUE	1017	Blue LED light		
	SD_CS	105	SD card signal selection, low level effective		
SDCARD	SD_MOSI	1023	SD card SPI bus write data signal		
SECARD	SD_SCK	IO18	SD card SPI bus clock signal		
	SD_MISO	1019	SD card SPI bus read data signal		
BATTERY	BAT_ADC	1034	Battery voltage ADC value acquisition signal (input)		
Audio	Audio_ENABLE	104	Audio enable signal, low-level enable, high-level disable		
	Audio_DAC	1026	Audio signal DAC output signal		
KEY	BOOT_KEY	100	and hold the butto	selection button (press on to power on, then download mode)	

	DECET VEV	EN	ESP32-23E reset button, low level reset	
	RESET_KEY		(shared with LCD screen reset)	
Cavial Dawn	RX0	RXD0	ESP32-32E serial port receiving signal	
Serial Port	тхо	TXD0	ESP32-32E serial port sends signal	
POWER	TYPE-C_POWER	/	Type-C power interface, connected to 5V voltage.	

Table 2.1 Pin allocation instructions for ESP32-32E onboard peripherals

3. Instructions for the example program

3.1. Set up ESP32 IDF development environment

For detailed instructions on setting up the ESP32 IDF development environment, please refer to the "Building an ESP-IDF environment using VS Code" documentation in the package.

3.2. Example Program Usage Instructions

The example program is located in the "1-示例程序_Demo\ESP32-IDF" directory of the package, as shown in the following figure:

Figure 3.1 Example Program

The example program has already been ported to LVGL and the relevant program files have been modified, so it can be used directly. For LVGL porting instructions, please refer to the "ESP-IDF_LVGL_porting_instructions" document in the resource package. The steps to use the example program are as follows:

- A. Copy the entire folder of the sample program "2.8inch_ESP32_LVGL" to a path named entirely in English. Otherwise, an error will occur during compilation due to the inability to find the path.
- B. Open the VS Code software, click on "File" ->"Open Folder", as shown in the

following figure

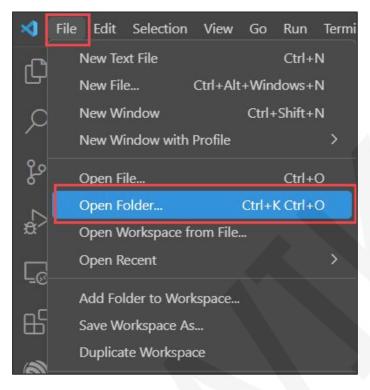


Figure 3.2 open folder

C. Find the sample program folder, click to select it, and then click the "Select Folder" button to open the sample program, as shown in the following figure:

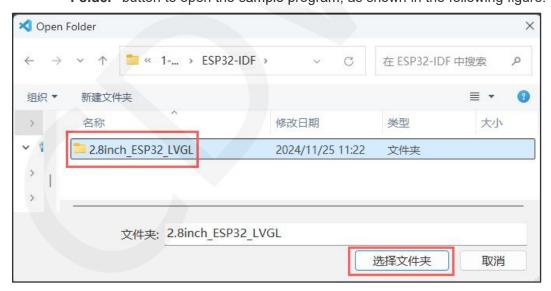


Figure 3.3 Find the sample program folder

- D. Connect the ESP32 device to the computer, select the correct serial port number, chip, and download method from the bottom toolbar of VS Code, and then click the button to compile and burn.
- **E.** After the burning is completed, you can see the display module has displayed.