1. Introduction to Testing Platform

Development Board: ESP32-WROOM-32E devKit

MCU: ESP32-32E module

Frequency: 240MHz

2. Pin connection instructions

The module can be directly plugged into the ESP32-32E development board, as shown in the following figure:

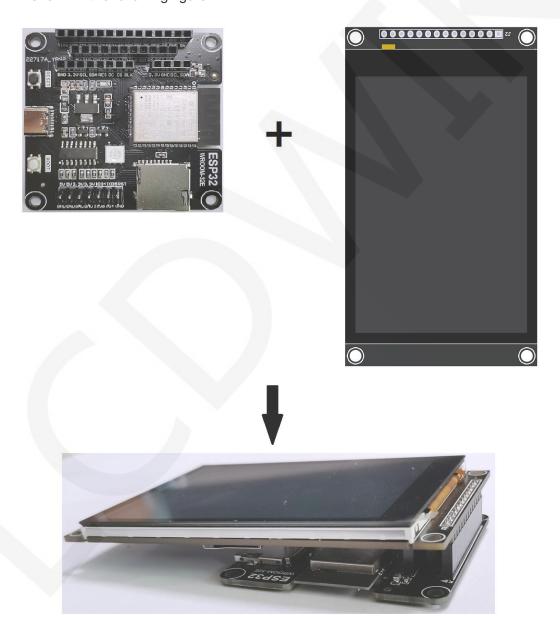
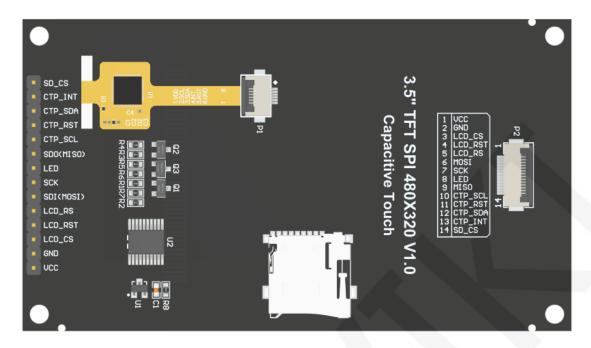
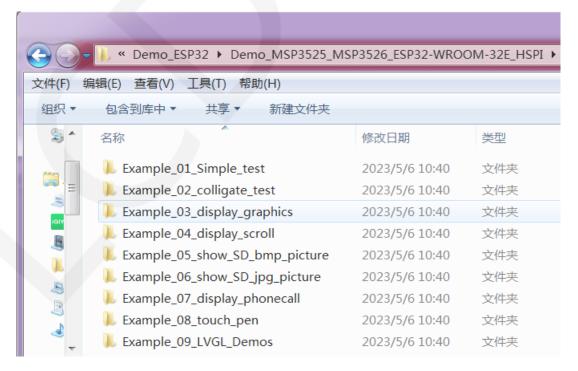


Figure 1: Module Inline ESP 32-32E Development Board




Figure 2 Module Back Pins

ESP32-32E Test Program Pin Direct Insertion Instructions				
Number	Module pins	Corresponding ESP32-32E development board wiring pins	Remarks	
1	VCC	5V	LCD power positive	
2	GND	GND	LCD Power ground	
3	LCD_CS	1015	LCD selection control signal, Low level active	
4	LCD_RST	1027	LCD reset control signal, Low level reset	
5	LCD_RS	102	LCD command / data selection control signal High level: data, low level: command	
6	SDI(MOSI)	1013	SPI bus write data signal(SD card and LCD screen used together)	
7	SCK	1014	SPI bus clock signal(SD card and LCD screen used together)	
8	LED	1021	LCD backlight control signal (If you need control, please connect the pins. If you don't need control, you can skip it)	
9	SDO(MISO)	1012	SPI bus read data signal (SD card and LCD screen used together)	

			Capacitive touch screen IIC bus clock
10	CTP_SCL	1025	signal (modules without touch screens
			do not need to be connected)
11	CTP_RST	1033	Capacitor touch screen reset control
			signal, low-level reset (modules without
			touch screens do not need to be
			connected)
12	CTP_SDA	1032	Capacitive touch screen IIC bus data
			signal (modules without touch screens
			do not need to be connected)
13	CTP_INT	1039	Capacitor touch screen IIC bus touch
			interrupt signal, when generating touch,
			input low level to the main control
			(modules without touch screens do not
			need to be connected)
			SD card selection control signal, low
14	SD_CS	1022	level active (without SD card function,
			can be disconnected)

3. Demo Function Description

This sample program uses the ESP32 hardware HSPI bus, which is located in **Demo_ MSP3525_MSP3526_ESP32-WROOM-32E_HSPI** directory, as shown in the following figure:

- A. Example_ 01_ Simple_ Test is a screen brushing test program, which does not rely on any software library;
- B. Example_ 02_ colligate_ Test is a comprehensive testing program that displays graphics, lines, and counts program runtime;
- C. Example_03_display_Graphics is a graphic display testing program that displays various graphics;
- D. Example_ 04_ display_ Scroll is a scrolling test program that displays text scrolling;
- E. Example_ 05_ show_ SD_ bmp_ Picture is a BMP image display program that displays BMP format images within SD;
- F、Example_ 06_ show_ SD_ jpg_ Picture is a JPG image display program that displays images in jpg format within SD;
- G. Example_07_ display_ Phonecall is a touch testing program for telephone dialing, which simulates the dialing function through touch;
- H. Example_ 08_ touch_ Pen is a touch stroke test program that draws on the LCD screen through touch;
- K. Example_ 09_ LVGL_ Demos is an LVGL example display program that allows you to experience the powerful UI design features of LVGL. The bin file for this example has been extracted and can be directly burned using the corresponding tool.

4. Demo Usage Instructions

♦ Building Development Environment

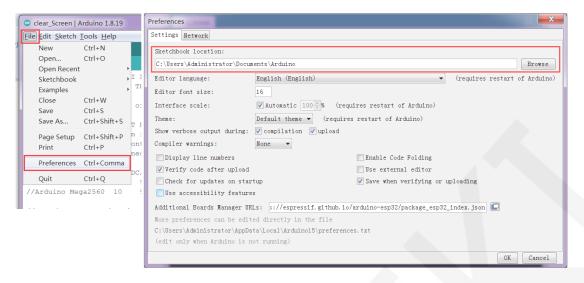
For specific methods of building a development environment, please refer to the "Arduino_development_environment_construction_for-ESP32-EN" document in this directory.

♦ Installing software library

After the development environment is set up, the software library used by the

sample program needs to be copied to the project library directory so that the sample program can be called. The software library is located in the **Install libraries** directory, as shown in the following figure:

Among them:


FT6336 arduino is the driver of FT6336 capacitive touch IC

LVgl is LVGL GUI graphics software library

TFT_ ESPI is an Arduino graphics library for TFT-LCD LCD screens, supporting multiple platforms and LCD driver ICs

TJpg_ Decoder is a JPG format image decoding library for the Arduino platform
These software library have been configured and can be directly copied to the project
library directory for use. The default path for the engineering library directory is

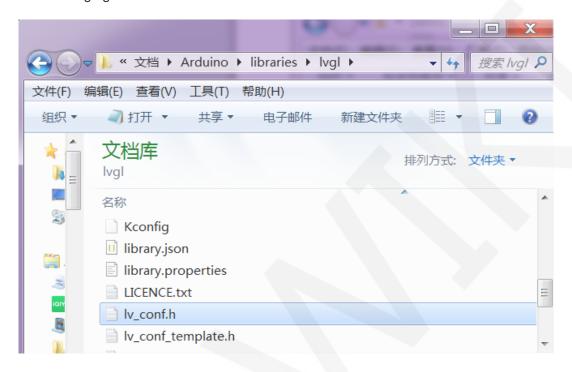
C:\Users\Administrator\Documents\Arduino\libraries. You can also change the
project library directory: open the Arduino IDE software, click File ->Preferences, and
reset the Sketchbook location in the pop-up interface, as shown in the following figure:

If you do not want to use the already configured library, you can download the latest version of the library (excluding FT6336 arduino) from Github at the following download address and then configured:

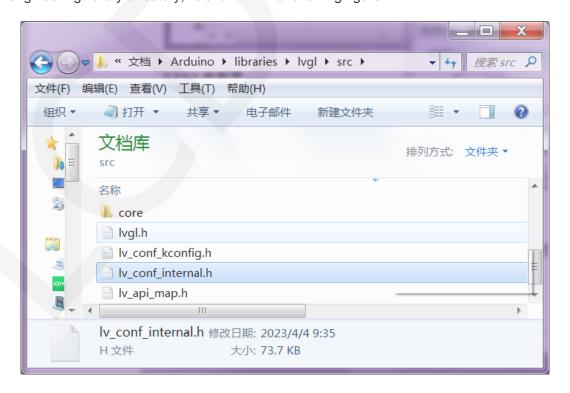
lvgl: https://github.com/lvgl/lvgl/tree/release/v8.3 (Only V8. x version can be used,

V9. x version cannot be used)

TFT_eSPI: https://github.com/Bodmer/TFT_eSPI

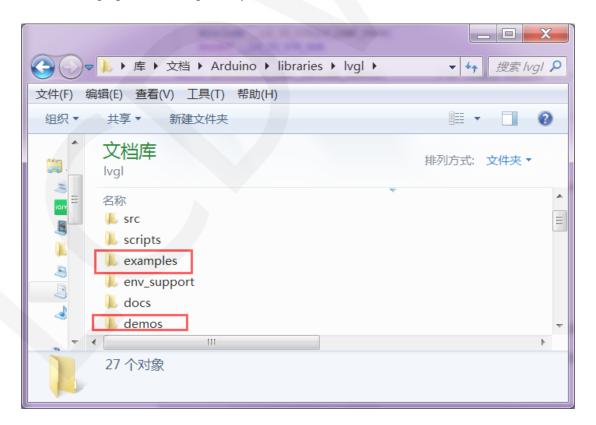

TJpg_Decoder: https://github.com/Bodmer/TJpg_Decoder

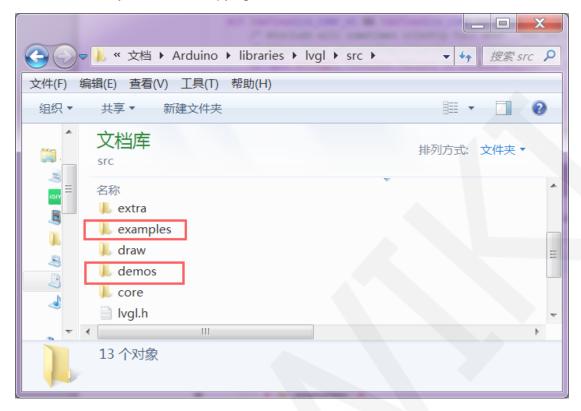
After the library download is completed, unzip it (for easy differentiation, rename the unzipped library folder, as shown in the Install libraries directory), and then copy it to the engineering library directory. Next, proceed with library configuration. The files that need to be replaced are located in the **Replaced files** directory, as shown in the following figure:



LVGL library configuration:

Copy the Iv_conf.h file which is in the Replace files directory to the top-level directory of the Ivgl library in the engineering library directory, As shown in the following figure:


Open the **lv_conf_internal.h** file which is in the Lvgl library **src** directory under the engineering library directory, As shown in the following figure:


After opening the file, modify the content of line **41** as shown in the following figure (from ".././Iv_conf. h" to "../Iv_conf. h"), and save after the modifications are completed.

```
/*If lv_conf.h is not skipped include it*/
#ifndef LV_CONF_SKIP
    #ifdef LV CONF PATH
                                                      /*If there is a path defined for lv conf.h u
        #define \__LV_TO_STR_AUX(x) #x
        \texttt{\#define} \ \_LV\_TO\_STR(x) \ \_LV\_TO\_STR\_AUX(x)
        #include __LV_TO_STR(LV_CONF_PATH)
#undef __LV_TO_STR_AUX
#undef __LV_TO_STR
    #elif defined(LV CONF INCLUDE SIMPLE)
                                                      /*Or simply include lv_conf.h is enabled*/
        #include "lv_conf.h"
        #include "../lv conf.h"
                                                   /*Else assume lv conf.h is next to the lvgl fo.
    #if !defined(LV CONF H) && !defined(LV CONF SUPPRESS DEFINE CHECK)
        /* #include will sometimes silently fail when _has_include is used */
        /* https://gcc.gnu.org/bugzilla/show bug.cgi?id=80753 */
        #pragma message("Possible failure to include lv_conf.h, please read the comment in th:
    #endif
#endif
```

Copy the examples and demos directories under the engineering library directory to the src directory under the lvgl library. These two directories are shown in the following figure in the lvgl library:



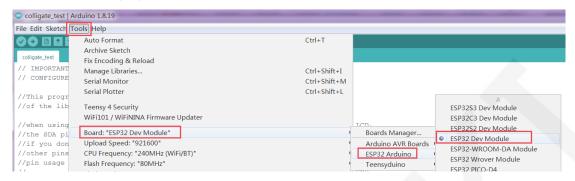
The directory status after copying:



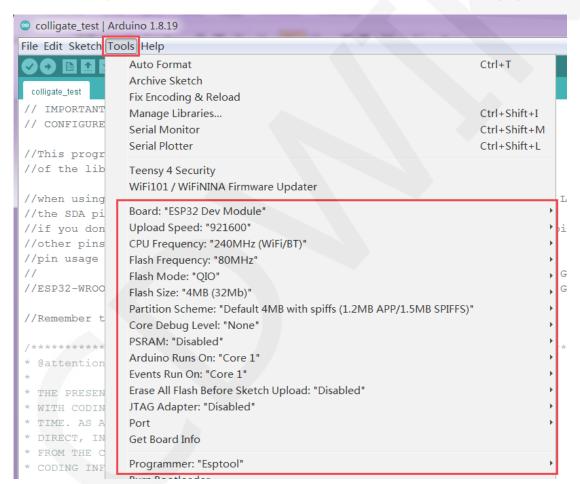
TFT_ ESPI library configuration:

First rename the **User_Setup.h** file which is in the top-level directory of the **TFT_eSPI** library of the engineering library directory to **User_Setup_bak.h**,then copy the **User_Setup.h** file which is in the **Replaced files** directory to the top-level directory of the **TFT_eSPI** library, As shown in the following figure:

First rename the ST7796_Init.h file which is in the TFT_Drivers directory of the the TFT_eSPI engineering library directory, then copy the ST7796_Init.h file to the TFT_Drivers directory of the the TFT_eSPI engineering library directory, as shown in the following figure:


♦ Compile and Run Programs

After the library installation is completed, the sample program can be compiled and run as follows:

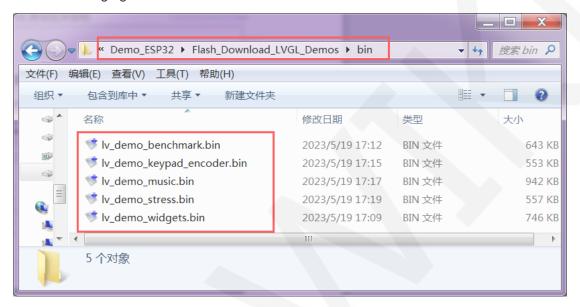

- A. Plug the display module directly into the ESP32 development board, and connect the development board to a PC to power on;
- B. Open Demo_ ESP32-WROOM-32E_ Any sample program in the HSPI directory, as shown in the following figure (using the colligate test test program as an example):

C. After opening the sample program, select the ESP32 device, as shown in the following figure:

D. Configure ESP32 Flash, PSRAM, ports, etc. as shown in the following figure:

E. Click the **upload** button to compile and download the program, as shown in the following figure:

F. If the following prompt appears, it indicates that the program has been compiled and downloaded successfully, and has already been run:


G. If the display module displays content, it indicates that the program has run successfully.

♦ LVGL example bin file burning

Due to the long compilation time of the LVGL sample program, the compiled bin file has been extracted and can be directly burned using the flash download tool.

Bin file located in

Demo_ESP32\Flash_Download_LVGL_Demos\bin directory,as shown in the following figure:

Using the flash_download_tool can burn in the

Demo_ESP32\Flash_Download_LVGL_Demos directory, as shown in the following figure:

13 / 13