

PRODUCT : LCD MODULE
MODEL NO . : QD14414B
SUPPLIER :QDtech
DATE :March28,2018

SPECIFICATION

Revion:1.1

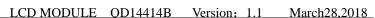
QD14414B

For Customer's Acceptance					
Approved by Comment					

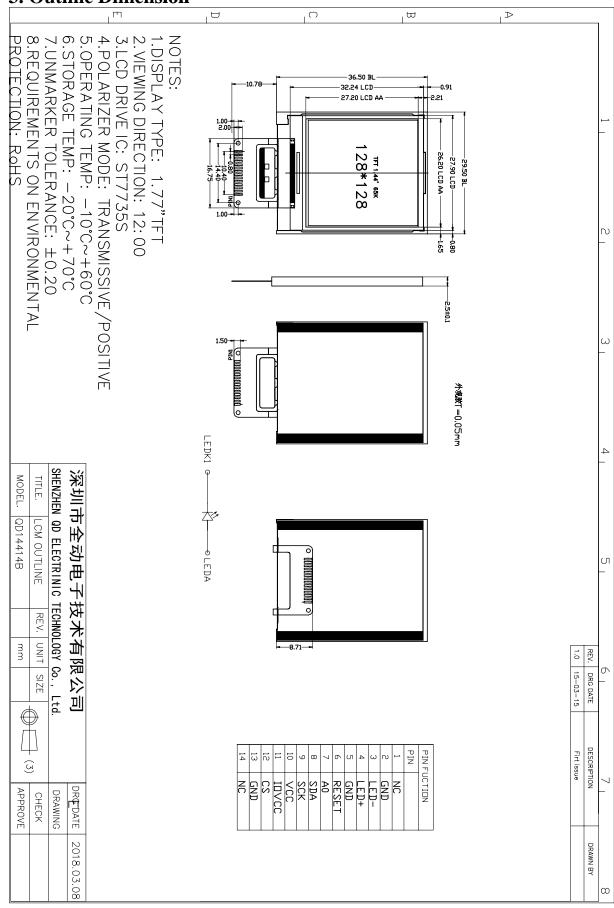
	Signature	Date
Prepared by		
Checked by		
Approved by		

Contents

No.	ITEM
1	Document Revision History
2	General Description
3	Outline Dimension
4	Interface Specification
5	Absolute Maximum Ratings
6	Electrical Specifications
7	Timing Characteristics
8	Power Supply Configuration
9	Optical Specification
10	Reliability Test Items
11	Precautions


1. Document Revision History:

DOCUMENT	DATE	DESCRIPTION	PREPARED
REVISION	DINE	DESCRI HOW	BY
A	2018-04-04	First Release.	



No	Item	Specification	Remark
1	Screen Size	1.44inch	
2	Display Mode	Normally White	
3	Resolution	128×RGB ×128	
4	Active Area	26.2X27.2	
5	Outline Dimension	29. 5*36. 5*2. 6	
6	Viewing Direction	12 O'Clock	
7	Driver IC	ST7735S	
8	Color Number	262K	
9	Interface	SPI	
10	Back Light	White Led1	
11	Touch Panel	-	

\

3. Outline Dimension

4.Interface Specification

Pin No	Symbol	Description	Note
1	NC	NC	
2	GND	System Ground	
3	LED-	Power Supply For LED Backlight Cathode Input	
4	LED+	Power Supply For LED Backlight Anode Input	
5	GND	System Ground	
6	RESET	Reset signal input Pin	
7	АО	Command/parameter or display data	
8	SDA	serial data input/output bi-direction pin	
9	SCK	High speed interface CLOCK differential signal input pins.	
10	VCC	Power supply input for LCM	
11	IOVCC	Power supply input for I/O	
12	CS	Chip select input signal	
13	GND	System Ground	
14	NC	NC	

5.Absolute Maximum Ratings

Electrical Maximum Ratings – for IC Only

Parameter	Symbol	Min.	Max.	Unit	Note
Power supply voltage (VCC)	VCC	-0.3	+4.0	V	1
Power supply voltage (IOVCC)	IOVCC	-0.3	+3.6	V	1

Note:

- 1.VCC, IOVCC, GND must be maintained.
- 2. The modules may be destroyed if they are used beyond the absolute maximum ratings.

6. Electrical Specifications

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage (analog)	VCC-GND		2.5	2.8	3.6	V
Supply voltage (logic)	IOVCC-GND		1.65	1.8	3.6	V
Supply current (Logic & LCD)	ICC	VDD2.8=2.8V	-	-	-	mA
Supply voltage of white LED backlight	VLED	Forward current =20mA Number of LED = 1	1	3	-	V

At Ta = 25 °C, VCC = 2.6V to 3.3V, IOVCC = 1.65V to 3.3V GND=0V.

1280

720

Note 5

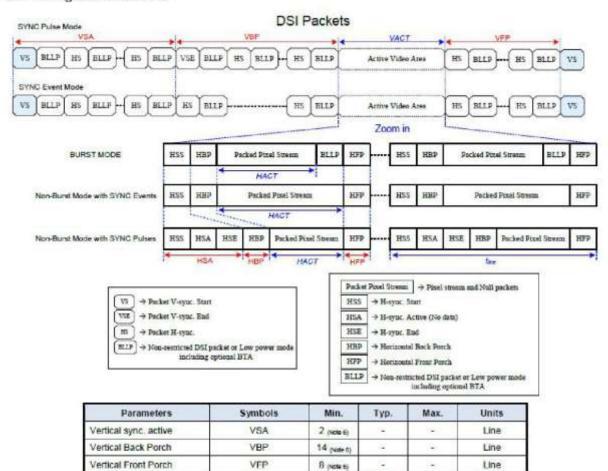
2

1.5

385

Line

Pixel


Pixel

Mbps/iane

7. Timing Characteristics

DSI Timing Characteristics

Bit rate

Active lines per frame

Horizontal sync. active

Horizontal Porch period

Active pixels per line

HSA(pixel)= (tHSA*lane number) / (UI* pixel format)

VACT

HSA

HSA + HBP + HFP

HACT

BRook

HBP(pixel)= (tHBP*lane number) / (UI* pixel format)

HFP(pixel)= (tHFP*lane number) / (UI* pixel format)

Frame Rate =
$$\frac{BR_{bps} \times Lane_{num}}{(VACT+VSA+VBP+VFP) \times (HACT+HSA+HBP+HFP) \times Pixel Format}$$

¹ UI=1/Bit rate

Reset timing

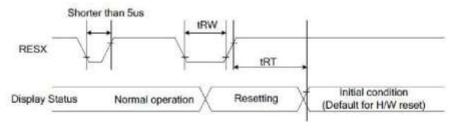


Table 47: Reset Timing

Signal	Symbol	Parameter	Min	Max	Unit
	1RW	Reset pulse duration	10	711370	u S
RESX	Serve	economic a		5 (note 1,5)	mS
	tRT	Reset cancel		120 (note 1,6,7)	mS

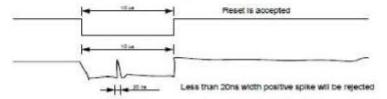
Notes

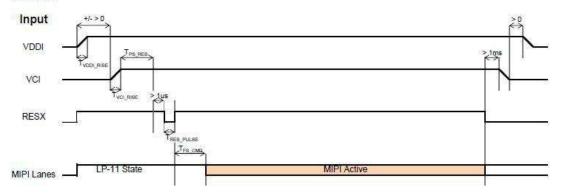
- The reset cancel also includes required time for loading ID bytes, VCOM setting and other settings from EEPROM to registers. This loading is done every time when there is H/W reset cancel time (tRT) within 5 ms after a rising edge of RESX.
- Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the Table 48.

Table 48: Reset Descript

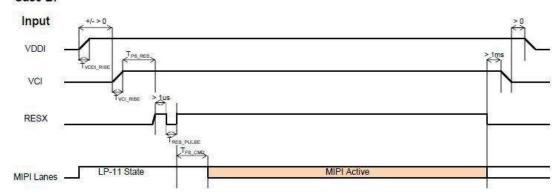
RESX Pulse	Action
Shorter than 5us	Reset Rejected
Longer than 10us	Reset
Between 5us and 10us	Reset starts

- During the Resetting period, the display will be blanked (The display enters the blanking sequence, which maximum time is 120 ms, when Reset Starts in the Sleep Out mode. The display remains the blank state in the Sleep In mode.) and then return to Default condition for Hardware Reset.
- 4. Spike Rejection can also be applied during a valid reset pulse, as shown below:




Figure 125: Positive Noise Pulse during Reset Low

- 5. When Reset applied during Sleep In Mode.
- 6. When Reset applied during Sleep Out Mode.
- It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.



7.Power Supply Configuration Power on/off sequence

Case A:

Case B:

Symbol	Characteristics	Min.	Тур.	Max.	Units		
T _{VDDI_RISE}	VDDI Rise time		VDDI Rise time		82	21	us
-	Case A: VCI Rise time	200			292		
T _{VCI_RISE}	Case B: VCI Rise time	40	2 3		us		
T _{PS_RES}	VDDI/VCI on to Reset high	5	ie		ms		
T _{RES_PULSE}	Reset low pulse time	10	67	5	us		
T _{FS_CMD}	Reset to first command	10	ia	- 10	ms		

8. Optical Specification

Item 项目	Symbol 符号	Condition 条件	Min 最小值	Typ 典型值	Max 最大值	Unit 单位	Note
Response time 响应时间	Tr+Tf		-	TBD	21	ms	1
Contrast ratio 对比度	Cr	Θ=0 ^O Θ=0 ^O Ta=25°C		TBD		181	2
Color gamut 饱和度	S(%)		853	TBD		%	8
Luminance uniformity 均匀度	^δ WHITE		80		9	%	3
	Θx+	CR≧10		65	=	deg	4
Viewing angle	Өх-	Ta=25°C		65		deg	
range 视角范围	Өу+	1000000		70	-	deg	
илищ	Өу-			40	-	deg	
LCM Luminance LCM 亮度	Lv	Θ=0°		100	×	Cd/m 2	5
CIE (X,Y) Chromaticity	White(X)	Ø=0° Ta=25°C	0.27	0.30	0.33	181	
色度坐标	White(Y)		0.30	0.33	0.36		6

Note1. Response time is the time required for the display to transition from White to black(Rise Time, Tr) and from black to white(Decay Time, Tf). For additional information see FIG1...

Note2.contrast Ratio(CR) is defined mathematically by the following formula, For more information see FIG2.

Contrast Ratio(CR)=Average Surface Luminance with all white pixels/ Average Surface Luminance with all black pixels

Note3. The uniformity in surface luminance(WHITE) is determined by measuring luminance at eath test position, and then dividing the maximum luminance of all white pixels by minimum luminance of all white pixels,For more information seeFIG2.

WHITE=Minimum Surface Luminance with all white pixels(P1,P2,.....)/Maximum Surface

Luminance with all white pixels(P1,P2,......)

Note4. Viewing angle is the angel at which contrast ratio is greater than a specific value. For TET module, the specific value of contrast ratio is 10. For monochrome and color stn module, the specific value of contrast ratio is 2. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG3

Note5. Surface luminance is the LCD surface luminance with all white pixels, For more information see FIG2.

LV=Average Surface Luminance with all white pixels(P1,P2,......)

Note6.CIE(X,Y)chromaticity is the Center point value.For more information see FIG2. Note7.For Viewing angle and response time testing,the testing date is base on Autronic-Melchers's ConScope.Series instruments.For contrast ratio,Surface Luminance,Luminance uniformity and CIE,the testing date is base on CS-2000 photo detector. Note8.For TN type TFT transmissive module,Gray scale reverse occurs in the direction of panel viewing angle

FIG1. The definition of Response time 响应时间定义

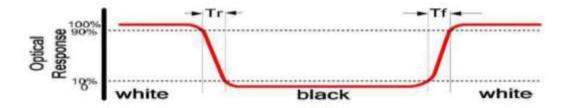
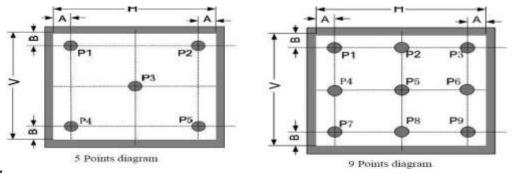
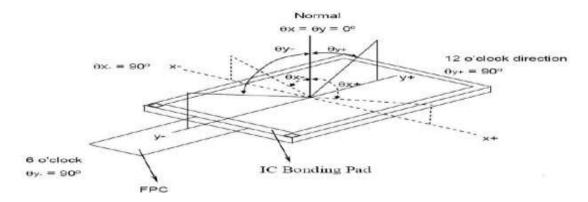




FIG2. Measuring method for Contrast ratio, surface luminance, Luminance uniformity, CIE(X,Y) chromaticity.

FIG3 The definition of viewing angle 视角定义

9. Reliability Test Items

Item	Test Condition	Criterion
High Temperature Storage	70 °C, 48 hrs	Note1,Note2
Low Temperature Storage	-20°C, 48 hrs	
High Temp. & High Humidity Storage	40 °C, 80% RH, 48hrs	
Thermal Shock (Static)	-20°C, 30 min /70, 30 min, 20 cycles	
High Temperature Operation	60 °C, 48 hrs	
Low temperature Operation	-10 ℃, 48 hrs	

Note1:Evaluation should be tested after storage at room temperature for two hours.

Note2:

Pass: Normal display image no line defect.

Fail: No display image, or line defects.

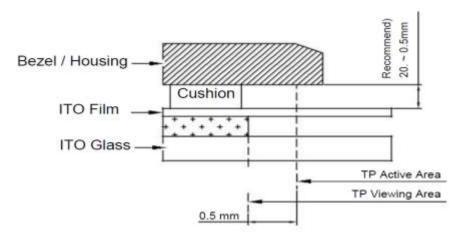
Partial transformation of the module parts should be ignored.

10.Precautions

Please pay attentions to the followings as using the LCD module.

Handling

- (a) Do not apply strong mechanical stress like drop, shock or any force to LCD module. It may cause improper operation, even damage.
- (b) Because the polarizer is very fragile and easy to be damaged, do not hit, press or rub the display surface with hard materials.
- (c) Do not put heavy or hard material on the display surface, and do not stack LCD modules.
 - If the display surface is dirty, please wipe the surface softly with cotton swab or clean cloth.
- (e) Avoid using Ketone type materials (e.g. Acetone), Toluene, Ethyl acid or Methyl chloride to clean the display surface. It might damage the touch panel surface permanently. The recommended solvents are water and Isopropyl alcohol.
- (f) Wipe off water droplets or oil immediately.
- (g) Protect the LCD module from ESD. It will damage the LSI and the electronic circuit.
- (h) Do not touch the output pins directly with bare hands.
- (i) Do not disassemble the LCD module.
- (j) Do not lift the FPC of Touch Panel.


Storage

- (a) Do not leave the LCD modules in high temperature, especially in high humidity for a long time.
- (b) Do not expose the LCD modules to sunlight directly.
- (c) The liquid crystal is deteriorated by ultraviolet. Do not leave it in strong ultraviolet ray for a long time.
- (d) Avoid condensation of water. It may cause improper operation.
- (e) Please stack only up to the number stated on carton box for storage and transportation. Excessive weight will cause deformation and damage of carton box.

Operation

- (a) When mounting or dismounting the LCD modules, turn the power off.
- (b) Protect the LCD modules from electric shock.
- (c) The Driver IC control algorithms stated above should always obeyed to avoid damaging the LSI and electronic circuit.
- (d) Be careful to avoid mixing up the polarity of power supply for backlight.
- (e) Absolute maximum rating specified above has to be always kept in any case. Exceeding it may cause non-recoverable damage of electronic components or, nevertheless, burning.
- (f) When a static image is displayed for a long time, remnant image is likely to occur.
- (g) Be sure to avoid bending the FPC to an acute shape, it might break FPC.
 - Most of the touch screens have air vent to equalize the inside air pressure to the outside one. The air vent must be open and liquid contact must be avoided as the liquid may be absorbed if the liquid is accumulated near the air vent.
- (i) For the fragility of ITO film, it should avoid to use too tapering pen as the input material.

The corner part has conductivity. Do not touch any metal part after mounting.

Others

- a) If the liquid crystal leaks from the panel, it should be kept away from the eyes or mouth.
- b) For the fragility of polarizer, it is recommended to attach a transparent protective plate over the display surface.
- It is recommended to peel off the protection film on the polarizer slowly so that the electrostatic charge can be minimized.