3.5inch Arduino 16BIT Module MAR3515 用户手册

产品概述

该款 Arduino Mega2560 模块为 3.5 寸 TFT LCD 模块, 拥有 480x320 分辨率, 可显示 65K 彩色。其采用 16 位线并口通信方式, 驱动 IC 为 ST7796S。该模块包含有 LCD 显示 屏, 5V~3.3V 电平转换电路,可以直插到 Arduino mega2560 开发板上使用, 还支持 SD 卡 和 SPI Flash 功能扩展。

产品特点

- 3.5 寸彩屏, 支持 16BIT RGB 65K 色显示, 显示色彩丰富
- 320x480 高清分辨率,显示效果清晰
- 采用 16 位并行总线传输,传输速度快
- 板载 5V/3.3V 电平转换 IC,兼容 5V/3.3V 工作电压
- 支持 Arduino Mage2560 直插式使用
- 提供 Arduino 库和丰富的示例程序
- 支持 SD 卡和 SPI Flash 功能扩展
- 军工级工艺标准,长期稳定工作
- 提供底层驱动技术支持

产品参数

描述
RGB 65K 彩色
MAR3515
3.5(inch)
TFT
ST7796S
480*320 (Pixel)
6Bit parallel interface
48.96x73.44 (mm)

模块尺寸	60.30x96.60 (mm)	
背光	6 chip HighLight white LEDs	
工作温度	-10° ℃ ~60 °℃	
存储温度	-20 ℃ ~70 ℃	
工作电压	3.3V / 5V	
功耗	TDB	
产品重量	约 45(g)	

接口说明

模块引脚丝印图

注意:

1. 图1中标注为NC的引脚没有使用,不需要接线;

重要说明:

1. 以下引脚序号1^{~30}是指我司带PCB底板的模块引脚编号,如果您购买的是 裸屏,请参考裸屏规格书的引脚定义,按照信号类型来参考接线而不是直 接根据下面的模块引脚编号来接线,举例:LCD_CS在我们模块上是20脚, 可能在不同尺寸裸屏上是x脚,以下接线程序说明是告诉您把LCD_CS这个 信号接到STM32单片机的PC9引脚。

- 2.关于VCC供电电压:如果您购买的是带PCB底板模块,VCC/VDD供电需要接 5V(模块已集成超低压差5V转3.3V电路),如果您购买的是液晶屏裸屏, 切记只能接3.3V。
- 3. 关于背光电压:带PCB底板的模块均已接入3. 3V,不需要再手动接入。如果您购买的是裸屏,则 LEDA接3. 0V-3. 3V, LEDKx接地即可。

序号	模块引脚	引脚说明
1	5V	中源引脚
2	5V	
3	DB8	
4	DB9	
5	DB10	
6	DB11	粉据台线宫8位引期
7	DB12	32.1012552(1010125.711)44
8	DB13	
9	DB14	
10	DB15	
11	DB7	
12	DB6	
13	DB5	
14	DB4	粉掘 首 绊 任 9 位 己 脚
15	DB3	刻/h/芯线 ll(0位 71 /li4)
16	DB2	
17	DB1	
18	DB0	
19	RS	液晶屏寄存器/数据选择引脚(高电平:数据,低电平:寄存器)
20	WR	液晶屏写控制引脚
21	CS	液晶屏片选控制引脚(低电平有效)

22	RST	液晶屏复位控制引脚(低电平有效)
23	NC	
24	NC	无定义,保留
25	NC	
26	F_CS	扩展引用: SPI flash片选引脚(扩展预留, 本测试程序无需接线)
27	NC	
28	NC	王宁义。但网
29	NC	九疋文, 床田
30	NC	
31	MISO	SPI总线输入引脚(扩展应用,无需接线)
32	MOSI	SPI总线输出引脚(扩展应用,无需接线)
33	CLK	SPI总线时钟引脚(扩展应用,无需接线)
34	SD_CS	扩展引用: SD卡片选引脚(扩展预留,本测试程序无需接线)
35	GND	中活业
36	GND	电你地

硬件配置

该 LCD 模块硬件电路包含三大部分:LCD 显示控制电路、电平转换电路、SD 卡控制电路。 LCD 显示控制电路用于控制 LCD 的引脚,包括控制引脚和数据传输引脚。 电平转换电路用于进行 5V/3.3V 转换,使模块可以兼容 3.3V/5V 电源。 SD 卡控制电路用于 SD 卡功能扩展,控制 SD 卡的识别,读取及写入。

工作原理

1、ST7796S 控制器简介

ST7796S 是一种用于 262 K 彩色 TFT-LCD 的单片控制器,支持的最大分辨率为 320*480, 拥有一个 345600 字节大小的 GRAM。同时支持 8 位、9 位、16 位、18 位并口数据总线,还支 持 3 线制和 4 线制 SPI 串口。由于支持的分辨率比较大,传输的数据量大,所以采用并口传 输,传输速度快。ST7796S 还支持 65K、262K 、16M RGB 颜色显示,显示色彩很丰富,同时 支持旋转显示和滚动显示以及视频播放,显示方式多样。

ST7796S 控制器使用 16bit (RGB565) 来控制一个像素点显示,因此可以每个像素点显示颜色多达 65K 种。像素点地址设置按照行列的顺序进行,递增递减方向由扫描方式决定。 ST7796S 显示方法按照先设置地址再设置颜色值进行。

2、并口通信简介

并口通信写模式时序如下图所示:

Note: WRX is an unsynchronized signal that can be terminated when not being used.

When the D/CX signal is driven to low level, the input data on the interface is interpreted as command information. The D/CX signal can also be pulled to high level when the data is RAM data or command parameter.

CSX 为片选信号,用于开启和禁止并口通信,低电平有效

RESX 为外部复位信号,低电平有效

D/CX 为数据或者命令选择信号, 1-写数据或者命令参数, 0-写命令

WRX 为写数据控制信号

D[X:0]为并口数据位, 共有8位、9位、16位、18位、24位五种类型

当进行写入操作时,在已经复位的基础上,先设置数据或者命令选择信号,然后将 片选信号拉低,接下来从主机输入需要写入的内容,然后将写数据控制信号拉低再拉高, 数据在写控制信号的上升沿会被写入到液晶屏控制 IC,最后将片选信号拉高,一次数据 写入操作完成。

使用说明

1、Arduino 使用说明

接线说明:

引脚标注见接口说明。

此模块可以直接插入 Mega2560 中使用,不需要再手动接线。

与Mega2560直插图

Arduino MEGA2560单片机测试程序直插说明		
序号	模块引脚	对应MEGA2560开发板直插引脚
1	5V	EV/
2	5V	57
3	DB8	22
4	DB9	23
5	DB10	24

LCDWIKI

6	DB11	25	
7	DB12	26	
8	DB13	27	
9	DB14	28	
10	DB15	29	
11	DB7	30	
12	DB6	31	
13	DB5	32	
14	DB4	33	
15	DB3	34	
16	DB2	35	
17	DB1	36	
18	DB0	37	
19	RS	38	
20	WR	39	
21	CS	40	
22	RST	41	
23	NC		
24	NC	没使用	
25	NC		
26	F_CS	45	
27	NC		
28	NC	设值田	
29	NC		
30	NC		
31	MISO	50	
32	MOSI	51	
33	CLK	52	
34	SD_CS	53	
35	GND	CND	
36	GND	GND	

操作步骤:

- A、按照上述接线说明将 LCD 模块直插到 Arduino 单片机上,并上电;
- B、将测试程序包中 Install libraries 目录下的依赖库拷贝到 Arduino 工程目录的 libraries 文件夹下(如果不需要依赖库,则不需要拷贝):
- C、打开 Arduino 测试程序所在目录,选择需要测试的示例,如下图所示: (测试程序说明请查阅测试程序包中测试程序说明文档)

project 3.5inch 3.5inch_Arduino_Mega2560_16BIT_Module_ST7796_MAR3515_	_V1.0 ▶ 1-Demo ▶ Demo_Arduino_M
7建文件夹	
A	
名称	
■ Evample ← 测试程序	
□ · · · · · · · · · · · · · · · · · · ·	
Linstall libraries 一例 以住/ 化秋冲	
7. 3.5inch_16BIT_Module_Arduino_Demo_Instructions_CN.pdf	这中革立识明文禄
1.5 a.5 inch_16BIT_Module_Arduino_Demo_Instructions_EN.pdf	了中央文优势文档

D、打开所选的示例工程,进行编译和下载。

关于 Arduino 测试程序依赖库拷贝、编译和下载的具体操作方法见如下文档:

http://www.lcdwiki.com/res/PublicFile/Arduino IDE Use Illustration CN.pdf

- E、LCD 模块如果正常显示字符和图形,则说明程序运行成功;
- 2、C51 使用说明

接线说明:

引脚标注见接口说明。

STC89C52RC单片机测试程序接线说明		
序号	模块引脚	对应STC89开发板接线引脚
1	5V	E)/
2	5V	57
3	DB8	P20
4	DB9	P21
5	DB10	P22
6	DB11	P23
7	DB12	P24
8	DB13	P25
9	DB14	P26

10	DB15	P27
11	DB7	Р37
12	DB6	Р36
13	DB5	P35
14	DB4	P34
15	DB3	P33
16	DB2	P32
17	DB1	P31
18	DB0	P30
19	RS	P12
20	WR	P11
21	CS	P13
22	RST	P14
23	NC	
24	NC	不需要接
25	NC	
26	F_CS	不需要接
27	NC	
28	NC	不需要接
29	NC	
30	NC	
31	MISO	不需要接
32	MOSI	不需要接
33	CLK	不需要接
34	SD_CS	不需要接
35	GND	GND
36	GND	GND

LCDWIKI

STC12C5A60S2单片机测试程序接线说明		
序号	模块引脚	对应STC12开发板接线引脚
1	5V	EV/
2	5V	57
3	DB8	P20
4	DB9	P21
5	DB10	P22
6	DB11	P23
7	DB12	P24
8	DB13	P25
9	DB14	P26
10	DB15	P27
11	DB7	P07
12	DB6	P06
13	DB5	P05
14	DB4	P04
15	DB3	P03
16	DB2	P02
17	DB1	P01
18	DBO	P00
19	RS	P12
20	WR	P11
21	CS	P13
22	RST	Р33
23	NC	
24	NC	不需要接
25	NC	
26	F_CS	不需要接
27	NC	不需要接

28	NC	
29	NC	
30	NC	
31	MISO	不需要接
32	MOSI	不需要接
33	CLK	不需要接
34	SD_CS	不需要接
35	GND	
36	GND	GND

操作步骤:

- A、按照上述接线说明将 LCD 模块和 C51 单片机连接起来,并上电;
- B、选择需要测试的 C51 测试程序,如下图所示:

C、打开所选的测试程序工程,进行编译和下载;

关于 C51 测试程序编译和下载的详细说明见如下文档:

http://www.lcdwiki.com/res/PublicFile/C51_Keil%26stc-isp_Use_Illustration_CN.pdf

- D、LCD 模块如果正常显示字符和图形,则说明程序运行成功;
- 3、STM32 使用说明

接线说明:

引脚标注见接口说明。

STM32F103RCT6单片机测试程序接线说明		
序号	模块引脚	对应MiniSTM32开发板接线引脚
1	5V	EV/
2	5V	57
3	DB8	PB8
4	DB9	PB9
5	DB10	PB10
6	DB11	PB11
7	DB12	PB12
8	DB13	PB13
9	DB14	PB14
10	DB15	PB15
11	DB7	РВ7
12	DB6	PB6
13	DB5	PB5
14	DB4	PB4
15	DB3	PB3
16	DB2	PB2
17	DB1	PB1
18	DB0	РВО
19	RS	PC8
20	WR	PC7
21	CS	PC9
22	RST	PC10
23	NC	
24	NC	不需要接
25	NC	
26	F_CS	不需要接
27	NC	不雲西埣
28	NC	小而安妆

29	NC	
30	NC	
31	MISO	不需要接
32	MOSI	不需要接
33	CLK	不需要接
34	SD_CS	不需要接
35	GND	CND
36	GND	GND

STM32F103ZET6单片机测试程序接线说明				
序号	模块引脚	对应Elite STM32开发板接线引脚		
1	5V	F)/		
2	5V	٧C		
3	DB8	PF8		
4	DB9	PF9		
5	DB10	PF10		
6	DB11	PF11		
7	DB12	PF12		
8	DB13	PF13		
9	DB14	PF14		
10	DB15	PF15		
11	DB7	PF7		
12	DB6	PF6		
13	DB5	PF5		
14	DB4	PF4		
15	DB3	PF3		
16	DB2	PF2		
17	DB1	PF1		
18	DB0	PFO		
19	RS	PC8		

LCDWIKI

3.5inch Arduino 16BIT Module MAR3515 用户手册 CR2022-MI2195

20	WR	PC7		
21	CS	PC9		
22	RST	PC10		
23	NC			
24	NC	不需要接		
25	NC			
26	F_CS	不需要接		
27	NC			
28	NC	て君田や		
29	NC	小而安按		
30	NC			
31	MISO	不需要接		
32	MOSI	不需要接		
33	СLК	不需要接		
34	SD_CS	不需要接		
35	GND	GND		
36	GND	GND		

STM32F407ZGT6单片机测试程序接线说明			
序号	模块引脚 对应Explorer STM32F4开发板接线引		
1	5V	EV	
2	5V	50	
3	DB8	PG8	
4	DB9	PG9	
5	DB10	PG10	
6	DB11	PG11	
7	DB12	PG12	
8	DB13	PG13	

LCDWIKI

3.5inch Arduino 16BIT Module MAR3515 用户手册 CR2022-MI2195

9	DB14	PG14
10	DB15	PG15
11	DB7	PG7
12	DB6	PG6
13	DB5	PG5
14	DB4	PG4
15	DB3	PG3
16	DB2	PG2
17	DB1	PG1
18	DBO	PGO
19	RS	PC8
20	WR	PC7
21	CS	PC9
22	RST	PC10
23	NC	
24	NC	不需要接
25	NC	
26	F_CS	不需要接
27	NC	
28	NC	不需要接
29	NC	行而安政
30	NC	
31	MISO	不需要接
32	MOSI	不需要接
33	СГК	不需要接
34	SD_CS	不需要接
35	GND	GND
36	GND	GND

STM32F429IGT6、STM32F767IGT6、STM32H743IIT6 单片机测试程序接线说明		
序号	模块引脚	对应Apollo STM32F4/F7开发板接线引脚
1	5V	
2	5V	5V
3	DB8	PE8
4	DB9	PE9
5	DB10	PE10
6	DB11	PE11
7	DB12	PE12
8	DB13	PE13
9	DB14	PE14
10	DB15	PE15
11	DB7	PE7
12	DB6	PE6
13	DB5	PE5
14	DB4	PE4
15	DB3	PE3
16	DB2	PE2
17	DB1	PE1
18	DBO	PEO
19	RS	PC8
20	WR	РС7
21	CS	PC9
22	RST	PC10
23	NC	
24	NC	不需要接
25	NC	
26	F_CS	不需要接
27	NC	不需要接

28	NC	
29	NC	
30	NC	
31	MISO	不需要接
32	MOSI	不需要接
33	CLK	不需要接
34	SD_CS	不需要接
35	GND	
36	GND	GND

操作步骤:

- A、按照上述接线说明将 LCD 模块和 STM32 单片机连接起来,并上电;
- B、选择需要测试的 STM32 测试程序,如下图所示:

C、打开所选的测试程序工程,进行编译和下载;

关于 STM32 测试程序编译和下载的详细说明见如下文档:

http://www.lcdwiki.com/res/PublicFile/STM32 Keil Use Illustration CN.pdf

D、LCD 模块如果正常显示字符和图形,则说明程序运行成功;

软件说明

- 1、代码架构
 - A、Arduino 代码架构说明

Arduino 的测试程序代码由两部分组成: LCDWIKI 库和应用代码。

LCDWIKI 库包含两部分内容: LCDWIKI_KBV 库和 LCD_GUI 库。

应用程序包含几个测试示例,每个测试示例包含不同的测试内容

- LCDWIKI_KBV 为底层库,和硬件有关联,主要负责操作寄存器,包括硬件模块初始化,数据和命令传输,像素点坐标和颜色设置,显示方式配置等。
- LCDWIKI_GUI 为中间层库,主要负责使用底层库提供的 API 实现图形的绘制,字符显示等操作。

应用程序是利用 LCDWIKI 库提供的 API, 编写一些测试示例, 实现某方面的测试功能。

B、C51 和 STM32 代码架构说明

代码架构如下图所示:

主程序运行时的 Demo API 代码包含在 test 代码中;

LCD 初始化以及相关的斌并口写数据操作都包含在 LCD 代码中;

画点、线、图形以及中英文字符显示相关的操作都包含在 GUI 代码中;

主函数实现应用程序运行;

平台代码因平台而异;

2、GPI0 定义说明

A、Arduino 测试程序 GPIO 定义说明

模块是直插到 Arduino mage 2560 上使用的,所以不允许修改 GPIO 口定义。

B、C51 测试程序 GPIO 定义说明

C51 测试程序 GPIO 定义放在 lcd.h 文件里,如下图所示:

//I0连接					
#define	LCD_DataPortH	P2 //7	高8位数据口,8位樽	氢丁万使用高8位	Ì.
#define	LCD_DataPortL	P0 //1	氏8位数据口,8位;	模式下低8位可以	、不
sbit LCD	RS = P1^2;	//数据/1	命令切换		
sbit LCD	WR = P1^1;	//写控制			
//sbit L	$CD_RD = P1^0;$	//读	控制		
sbit LCD	CS = P1^3; /	//片选			
sbit LCD	RESET = $P3^3$;		夏位		
//sbit L	CD_BL=P3^2; /	//背光控制,	如果不需要控制	,接3.3Ⅴ	

并口引脚定义需要选择整套 GPI0 口组,如 P1, P2 等,这样传输数据时,操作方便。

其他引脚可以定义成任何空闲的 GPIO。

C、STM32 测试程序 GPIO 定义说明

STM32 测试程序 GPIO 定义放在 lcd.h 文件里,如下图所示:

#define GPIO_TYPE GPIOC //GPIO组类型 //背光控制引脚 //片选引脚 //寄存器/数据选择引脚 PC8 //复位引脚 //写引脚 define LCD WR / 7 //QDtech全系列模块采用了三极管控制背光亮灭,用户也可以接PWM调节背光亮度 //#define LCD LED PBout(LED) //LCD背光 PC4 //如果使用官方库函数定义下列底层,速度将会下降到14帧每秒,建议采用我司推荐方法 //以下IO定义直接操作寄存器,快速IO操作,刷屏速率可以达到28帧每秒! //GPIO置位(拉高) #define LCD_CS_SET GPIO_TYPE->BSRR=1<<LCD_CS
#define LCD_RS_SET GPIO_TYPE->BSRR=1<<LCD_RS
#define LCD_RST_SET GPIO_TYPE->BSRR=1<<LCD_RST_</pre> //片选端口 //数据/命令 //复位 //GPIO复位(拉低) #define LCD_CS_CLR GPIO_TYPE->BRR=1<<LCD_CS
#define LCD_RS_CLR GPIO_TYPE->BRR=1<<LCD_RS
#define LCD_RST_CLR GPIO_TYPE->BRR=1<<LCD_RST
#define LCD_WR_CLR GPIO_TYPE->BRR=1<<LCD_WR</pre> //片选端口 //数据/命令 //PB0~15,作为数据线 //注意:如果使用8位模式数据总线,则液晶屏的数据高8位是接到MCU的高8位总线上 //举例:如果接8位模式则本示例接线为液晶屏DB10-DB17对应接至单片机GPIOB_Pin8-GPIOB //举例: 如果是16位模式: DBO-DB7分别接GPIOB_PinO-GPIOB_Pin7,DB1O-DB17对应接至单片 define DATAOUT(x) GPIOB->ODR=x; //数据输出

数据并口引脚定义需要选择整套 GPIO 口组,如 PB, PE 等,传输数据时,操作方便。

其他引脚可以定义成任何空闲的 GPIO。

3、并口通信代码实现

A、Arduino 测试程序并口通信代码实现

相关的代码在 LCDWIKI_KBV 库的 mcu_16bit_magic.h 文件里实现,如下图所示:

```
// Data write strobe, ~2 instructions and always inline
#define WR_STROBE { WR_ACTIVE; WR_IDLE; }
#define RD_STROBE {RD_IDLE; RD_ACTIVE;RD_ACTIVE;RD_ACTIVE;}
#define write16(x) { write_16(x) }
#define read16(dst) { read_16(dst) }
#define writeCmd8(x){ CD_COMMAND; write8(x); CD_DATA; }
#define writeData8(x){ write8(x) }
#define writeCmd16(x){ CD_COMMAND; write16(x); CD_DATA; }
#define writeData16(x){ write16(x) }
#define writeData16(x){ write16(x) }
```

#define write8(x) { PORTC = x; WR_STROBE;}

实现了8、16位命令以及8、16位数据传输。

B、C51 和 STM32 测试程序并口通信代码实现

相关的代码在 LCD. c 文件里实现,如下图所示:

实现了8、16位命令以及8、16位数据传输。

常用软件

本套测试示例需要显示中英文、符号以及图片,所以要用到取模软件。取模软件有两种: Image2Lcd 和 PCtoLCD2002。这里只针对该套测试程序说明一下取模软件的设置。

PCtoLCD2002 取模软件设置如下:

点阵格式选择<mark>阴码</mark>

取模方式选择逐行式

取模走向选择顺向(高位在前)

输出数制选择十六进制数

自定义格式选择 C51 格式

具体设置方法见如下网页:

http://www.lcdwiki.com/zh/%E3%80%90%E6%95%99%E7%A8%8B%E3%80%91%E4%B8%AD%E8 %8B%B1%E6%96%87%E6%98%BE%E7%A4%BA%E5%8F%96%E6%A8%A1%E8%AE%BE%E7%BD% <u>AE</u>

Image2Lcd 取模软件设置如下图所示:

image: state with the state with t		۲
□ 字节内象素数据反 □ 自右至左扫描	恢复缺省值 🔽 颜色反转	正常显示
□ 自底至顶扫描 □ 言位在前(MSB Fin)	亮度:	<u> </u>
	对比度:	
	输出图像调整 256色 4096色 16位彩色 18位	彩色」24位彩色」32位彩色」注册」
输入图像:qq_logo源	图片.bmp (40,40) 输出图像:(4	40,40)

Image2Lcd 软件需要设置为水平、自左向右、自上向下、低位在前扫描方式。